Minggu, 09 Oktober 2016

Pengertian Mesin Diesel

1. Mesin Diesel 
Salah satu penggerak mula yang banyak dipakai adalah mesin kalor, yaitu mesin yang menggunakan energi termal untuk melakukan kerja mekanik atau yang mengubah energi termal menjadi energi mekanik. Energi itu sendiri dapat diperoleh dengan proses pembakaran, proses fisi bahan bakar nuklir atau proses-proses yang lain. Ditinjau dari cara memperoleh energi termal ini, mesin kalor dibagi menjadi dua golongan yaitu mesin pembakaran luar dan mesin pembakaran dalam. Pada mesin pembakaran luar proses pembakaran terjadi di luar mesin dimana energi termal dari gas hasil pembakaran dipindah ke fluida kerja mesin melalui beberapa dinding pemisah. 

Sedangkan pada mesin pembakaran dalam atau dikenal dengan motor bakar, proses pembakaran terjadi di dalam motor bakar itu sendiri sehingga gas pembakaran yang terjadi sekaligus berfungsi sebagai fluida kerja. Motor diesel disebut juga motor bakar atau mesin pembakaran dalam karena pengubahan tenaga kimia bahan bakar menjadi tenaga mekanik dilaksanakan di dalam mesin itu sendiri. Di dalam motor diesel terdapat torak yang mempergunakan beberapa silinder yang di dalamnya terdapat torak yang bergerak bolak-balik (translasi). 

Di dalam silinder itu terjadi pembakaran antara bahan bakar solar dengan oksigen yang berasal dari udara. Gas yang dihasilkan oleh proses pembakaran mampu menggerakkan torak yang dihubungkan dengan poros engkol oleh batang penggerak. Gerak tranlasi yang terjadi pada torak menyebabkan gerak rotasi pada poros engkol dan sebaliknya gerak rotasi tersebut mengakibatkan gerak bolak-balik torak . 

Konsep pembakaran pada motor diesel adalah melalui proses penyalaan kompresi udara pada tekanan tinggi. Pembakaran ini dapat terjadi karena udara dikompresi pada ruangan dengan perbandingan kompresi jauh lebih besar daripada motor bensin (7-12), yaitu antara (14-22). akibatnya udara akan mempunyai tekanan dan temperatur melebihi suhu dan tekanan penyalaan bahan bakar Hal ini berbeda untuk percikan pengapian mesin seperti mesin bensin yang menggunakan busi untuk menyalakan campuran bahan bakar udara. Mesin dan siklus termodinamika keduanya dikembangkan oleh Rudolph Diesel pada tahun 1892. 

Siklus Diesel (Tekanan Tetap) 
Siklus diesel adalah siklus teoritis untuk compression-ignition engine atau mesin diesel. Perbedaan antara siklus diesel dan Otto adalah penambahan panas pada tekanan tetap. Karena alasan ini siklus Diesel kadang disebut siklus tekanan tetap. Dalam diagram P-v, siklus diesel dapat digambarkan seperti berikut:


Gambar 2.1 Siklus Diesel Diagram P-v

Proses dari siklus tersebut yaitu: 
6-1 = Langkah Hisap pada P = c (isobarik) 
1-2 = Langkah Kompresi, P bertambah, Q = c (isentropik / reversibel adiabatik) 
2-3 = Pembakaran, pada tekanan tetap (isobarik) 
3-4 = Langkah Kerja P bertambah, V = c (isentropik / reversibel adiabatik) 
4-5 = Pengeluaran Kalor sisa pada V = c (isokhorik) 
5-6 = Langkah Buang pada P = c

Motor diesel empat langkah bekerja bila melakukan empat kali gerakan (dua kali putaran engkol) menghasilkan satu kali kerja. Secara skematis prinsip kerja motor diesel empat langkah dapat dijelaskan sebagai berikut: 
  1. Langkah hisap Pada langkah ini katup masuk membuka dan katup buang tertutup. Udara mengalir ke dalam silinder. 
  2. Langkah kompresi Pada langkah ini kedua katup menutup, piston bergerak dari titik TBM ke TMA menekan udara yang ada dalam silinder. 5 ᵒ setelah mencapai TMA, bahan bakar diinjeksikan. 
  3. Langkah ekspansi Karena injeksi bahan bakar kedalam silinder yang bertemperatur tinggi, bahan bakar terbakar dan berekspansi menekan piston untuk melakukan kerja sampai piston mencapai TMB. Kedua katup tertutup pada langkah ini. 
  4. Langkah buang Ketika piston hampir mencapai TMB, katub buang terbuka, katub masuk tetap tertutup. Ketika piston bergerak menuju TMA sisa pembakaran terbuang keluar ruang bakar. Akhir langkah ini adalah ketika piston mencapai TMA. Siklus kemudian berulang lagi .


Gambar 2.1 Siklus Diesel Diagram P-v

Siklus Aktual Motor Diesel` 
Dalam siklus diesel, kerugian-kerugian lebih rendah daripada yang terjadi pada siklus otto. Kerugian utama adalah karena pembakaran tidak sempurna dan penyebab utama perbedaan antara siklus teoritis dan siklus mesin diesel. Dalam siklus teoritis pembakaran diharapkan selesai pada akhir pembakaran tekanan tetap, tetapi aktualnya after burning berlanjut sampai setengah langkah ekspansi. Perbandingan efisiensi antara siklus aktual dan teoritis adalah sekitar 0,85.


Gambar 2.1 Siklus Diesel Diagram P-v

Karakteristik Bahan Bakar Mesin 
Diesel Karakteristik bahan bakar mesin diesel yaitu: 
  1. Volatilitas (Penguapan) Penguapan adalah sifat kecenderungan bahan bakar untuk berubah fasa menjadi uap. Tekanan uap yang tinggi dan titik didih yang rendah menandakan tingginya penguapan. Makin rendah suhu ini berarti makin tinggi penguapannya. 
  2. Titik Nyala Titik nyala adalah titik temperatur terendah dimana bahan bakar dapat menimbulkan uap yang dapat terbakar ketika disinggungkan dengan percikan atau nyala api. Nilai titik nyala berbanding terbalik dengan penguapan. 
  3. Viskositas Viskositas menunjukkan resistensi fluida terhadap aliran. Semakin tinggi viskositas bahan bakar, semakin sulit bahan bakar itu diinjeksikan. Peningkatan viskositas juga berpengaruh secara langsung terhadap kemampuan bahan bakar tersebut bercampur dengan udara. 
  4. Kadar Sulfur Kadar sulfur dalam bahan bakar diesel yang berlebihan dapat menyebabkan terjadinya keausan pada bagian-bagian mesin. Hal ini terjadi karena adanya partikelpartikel padat yang terbentuk ketika terjadi pembakaran. 
  5. Kadar Air Kandungan air yang terkandung dalam bahan bakar dapat membentuk kristal yang dapat menyumbat aliran bahan bakar. 
  6. Kadar Abu Kadar abu menyatakan banyaknya jumlah logam yang terkandung dalam bahan bakar. Tingginya konsentrasi dapat menyebabkan penyumbatan pada injeksi, penimbunan sisa pembakaran. 
  7. Kadar Residu Karbon Kadar residu karbon menunjukkan kadar fraksi hidrokarbon yang mempunyai titik didih lebih tinggi dari bahan bakar, sehingga karbon tertinggal setelah penguapan dan pembakaran bahan bakar. 
  8. Titik Tuang Titik tuang adalah titik temperatur terendah dimana bahan bakar mulai membeku dan terbentuk kristal-kristal parafin yang dapat menyumbat saluran bahan bakar. 
  9. Kadar Karbon Kadar karbon menunjukkan banyaknya jumlah karbon yang terdapat dalam bahan bakar. 
  10. Kadar Hidrogen Kadar hidrogen menunjukkan banyaknya jumlah hidrogen yang terdapat dalam bahan bakar. 
  11. Angka Setana Angka setana menunjukkan kemampuan bahan bakar untuk menyala sendiri (auto ignition). Semakin cepat suatu bahan bakar mesin diesel terbakar setelah diinjeksikan ke dalam ruang bakar, semakin tinggi angka setana bahan bakr tersebut. Angka setana bahan bakar adalah persen volume dari setana dalam campuran setana dan alfa-metil-naftalen yang mempunyai mutu penyalaan yang sama dengan bahan bakar yang diuji. Bilangan setana 48 berarti bahan bakar setara dengan campuran yang terdiri atas 48% setana dan 52% alfa-metil-naftalen. 
  12. Nilai Kalor Nilai kalor menunjukkan energi kalor yang dikandung dalam setiap satuan massa bahan bakar. Semakin tinggi nilai kalor suatu bahan bakar, semakin besar energi yang dikandung bahan bakar tersebut persatuan massa. 
  13. Massa Jenis Massa jenis menunjukkan besarnya perbandingan antara massa dari suatu bahan bakar dengan volumenya.

2. Teori Pembakaran 
Pada motor bakar, proses pembakaran merupakan reaksi kimia yang berlangsung sangat cepat antara bahan bakar dengan oksigen yang menimbulkan panas sehingga mengakibatkan tekanan dan temperatur gas yang tinggi. Kebutuhan oksigen untuk pembakaran diperoleh dari udara yang memerlukan campuran antara oksigen dan nitrogen, serta beberapa gas lain dengan persentase yang relatif kecil dan dapat diabaikan. Reaksi kimia antara bahan bakar dan oksigen yang diperoleh dari udara akan menghasilkan produk hasil pembakaran yang komposisinya tergantung dari kualitas pembakaran yang terjadi. Dalam pembakaran proses yang terjadi adalah oksidasi dengan reaksi sebagai berikut:


Gambar 2.4 Proses Pembakaran Mesin Diesel

Pembakaran di atas dikatakan sempurna bila campuran bahan bakar dan oksigen (dari udara) mempunyai perbandingan yang tepat, hingga tidak diperoleh sisa. Bila oksigen terlalu banyak, dikatakan campuran “lean” (kurus), pembakaran ini menghasilkan api oksidasi. Sebaliknya, bila bahan bakarnya terlalu banyak (atau tidak cukup oksigen), dikatakan campuran “rich” (kaya), pembakaran ini menghasilkan api reduksi. Dalam pembakaran, ada pengertian udara primer yaitu udara yang dicampurkan dengan bahan bakar di dalam burner (sebelum pembakaran) dan udara sekunder yaitu udara yang dimasukkan dalam ruang pembakaran setelah burner, melalui ruang sekitar ujung burner atau melalui tempat lain pada dinding dapur. Berat massa bahan yang masuk ruang pembakaran = berat massa bahan yang keluar.


SUMBER;

Pengertian Mesin Diesel Rating: 4.5 Diposkan Oleh: frf

1 komentar: